博客
关于我
统计与优化之方差分析作业
阅读量:552 次
发布时间:2019-03-09

本文共 796 字,大约阅读时间需要 2 分钟。

首先,我需要明确数据结构和变量 Meaning,安排合适的计算步骤。具体来说,行代表不同加压水平,列代表不同的机器,这意味着我需要对每一行和每一列分别进行平均值计算。此外,还需要计算总体平均纱支强度以及与此总体平均值的误差平方和。用于F检验的分子分母都是基于样本方差计算得到的。整个过程中,我严格遵循了 NaN 检验和异常值剔除,确保计算的准确性。

在代码实现部分,我首先导入了 numpy 库,并利用 np.array 将实验数据转化为 NumPy 数组,以便高效计算。在计算样本均值和总体均值时,我选择使用 np.mean 函数,并通过 axis 参数指定计算轴。为了 保持结果精度,一定比例的平均值结果被四舍五入至小数点后两位,避免小数点过多干扰后续计算。

误差平方和的计算过程采用了 matrix veterinaria 是将每个加压水平和机器的平均值与总体平均值之间的差异平方,然后将差异平方求和。为了节省计算时间,我确保每一步骤计算出准确的误差平方和值,并将结果四舍五入保留两位小数,以展示简洁明了的统计结果。

在方差计算部分,样本方差的做法是使用 np.sum 函数求误差平方和除以自由度,确保计算出的方差具有统计学意义。在 F 检验部分,样本方差既作为临界值分子,也作为比值计算的分母,我根据统计老师上课的讲解选择了合适数学上的 F 分配率。

整个计算过程没有遇到特殊数据问题或计算错误,每一步骤的结果都符合预期。通过 NumPy 的高效计算方式,我成功地完成了实验数据的统计分析,为后续的实验结果分析和服装材料选型提供了可靠的依据。

最终,通过对比不同加压水平和机器组合下 纱支强度的均值分布,可以看出不同加压水平对纱支强度影响较大。基于F 检验的结果显示,各个加压水平间差异显著,而在同一加压水平下,不同机器之间的差异相对较小。这为选择最佳的纺织机加压水平提供了科学依据。

转载地址:http://fjqsz.baihongyu.com/

你可能感兴趣的文章
MSCRM调用外部JS文件
查看>>
MSCRM调用外部JS文件
查看>>
MSEdgeDriver (Chromium) 不适用于版本 >= 79.0.313 (Canary)
查看>>
MsEdgeTTS开源项目使用教程
查看>>
msf
查看>>
MSSQL数据库查询优化(一)
查看>>
MSSQL数据库迁移到Oracle(二)
查看>>
MSSQL日期格式转换函数(使用CONVERT)
查看>>
MSTP多生成树协议(第二课)
查看>>
MSTP是什么?有哪些专有名词?
查看>>
Mstsc 远程桌面链接 And 网络映射
查看>>
Myeclipse常用快捷键
查看>>
MyEclipse更改项目名web发布名字不改问题
查看>>
MyEclipse用(JDBC)连接SQL出现的问题~
查看>>
mt-datetime-picker type="date" 时间格式 bug
查看>>
myeclipse的新建severlet不见解决方法
查看>>
MyEclipse设置当前行背景颜色、选中单词前景色、背景色
查看>>
Mtab书签导航程序 LinkStore/getIcon SQL注入漏洞复现
查看>>
myeclipse配置springmvc教程
查看>>
MyEclipse配置SVN
查看>>